On Monochromatic Clean Condition on Certain Finite Rings

نویسندگان

چکیده

For a finite commutative ring R, let a,b,c∈R be fixed elements. Consider the equation ax+by=cz where x, y, and z are idempotents, units, any element in respectively. We say that R satisfies r-monochromatic clean condition if, for r-colouring χ of elements there exist x,y,z∈R with χ(x)=χ(y)=χ(z) such holds. define m(a,b,c)(R) to least positive integer r does not satisfy condition. This means exists χ(i)=χ(j) some i,j∈{x,y,z} i≠j. In this paper, we prove results on then formulate various conditions when m(1,1,1)(R)=2 or 3, among other concerning Zn integers modulo n.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dedekind-finite Strongly Clean Rings

In this paper we partially answer two open questions concerning clean rings. First, we demonstrate that if a quasi-continuous module is strongly clean then it is Dedekind-finite. Second, we prove a partial converse. We also prove that all clean decompositions on submodules of continuous modules extend to the entire module.

متن کامل

On $\mathbb{Z}G$-clean rings

Let $R$ be an associative ring with unity. An element $x \in R$ is called $\mathbb{Z}G$-clean if $x=e+r$, where $e$ is an idempotent and $r$ is a $\mathbb{Z}G$-regular element in $R$. A ring $R$ is called $\mathbb{Z}G$-clean if every element of $R$ is $\mathbb{Z}G$-clean. In this paper, we show that in an abelian $\mathbb{Z}G$-regular ring $R$, the $Nil(R)$ is a two-sided ideal of $R$ and $\fra...

متن کامل

ON STRONGLY g(x)-CLEAN RINGS

Let R be an associative ring with identity, C(R) denote the center of R, and g(x) be a polynomial in the polynomial ring C(R)[x]. R is called strongly g(x)-clean if every element r ∈ R can be written as r = s+u with g(s) = 0, u a unit of R, and su = us. The relation between strongly g(x)-clean rings and strongly clean rings is determined, some general properties of strongly g(x)-clean rings are...

متن کامل

Generalized f-clean rings

In this paper, we introduce the new notion of n-f-clean rings as a generalization of f-clean rings. Next, we investigate some properties of such rings. We prove that $M_n(R)$ is n-f-clean for any n-f-clean ring R. We also, get a condition under which the denitions of n-cleanness and n-f-cleanness are equivalent.

متن کامل

Strongly nil-clean corner rings

We show that if $R$ is a ring with an arbitrary idempotent $e$ such that $eRe$ and $(1-e)R(1-e)$ are both strongly nil-clean rings‎, ‎then $R/J(R)$ is nil-clean‎. ‎In particular‎, ‎under certain additional circumstances‎, ‎$R$ is also nil-clean‎. ‎These results somewhat improves on achievements due to Diesl in J‎. ‎Algebra (2013) and to Koc{s}an-Wang-Zhou in J‎. ‎Pure Appl‎. ‎Algebra (2016)‎. ‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11051107